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The nonlocal elastic response function is crucial for understanding many properties of soft solids. This may
be obtained by measuring strain-strain autocorrelation functions. We use computer simulations as well as video
microscopy data of superparamagnetic colloids to obtain these correlations for two-dimensional triangular
solids. Elastic constants and elastic correlation lengths are extracted by analyzing the correlation functions. We
show that to explain our observations displacement fluctuations in a soft solid need to contain affine �strain� as
well as nonaffine components.
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Elasticity theory �1,2� is based on the assumption that the
displacement field u�r� is smooth and continuous for all po-
sitions r within a volume V. It is expected that this assump-
tion breaks down �3� below a limiting length �el. How small
is �el in practice, and what are the consequences of the break-
down? What implications does this have on the mechanical
response of the material? While for most conventional engi-
neering problems such issues are practically irrelevant, they
do become important when investigating microelastic and
microrheological properties of soft solids �6�. We answer
these questions in the context of the nonlocal mechanical
response of a soft solid in two dimensions �2D�. Nonlocal
elastic effects are important whenever strain gradients are
large, e.g., near crack tips, grain boundaries, and interfaces
�4�. They should also be important if the linear dimension of
the solid is not much larger than �el. Both of these criteria are
satisfied in colloidal solids under usual experimental condi-
tions �5�.

Recently, there has been a lot of interest in obtaining the
elastic moduli of soft solids �6,7� from fluctuations of par-
ticle coordinates �8–12�. These methods have several advan-
tages. First, no specialized equipment is necessary other than
standard video microscopy �7�. Second, no external forces
need to be applied which may change the very properties that
are being measured. This is especially convenient when try-
ing to obtain elastic constants near the dislocation unbinding
transition �1� where the solid is sensitive to external pertur-
bations �11�. Lastly, these techniques are general enough so
that they may be applied to a wide variety of systems �13�.
Here we extend this procedure a step further to study nonlo-
cal �4� elasticity for solids in two dimensions far from the
melting transition.

The nonlocal elastic response function, or compliance
�ij�r ,r�� �i=x ,y�, is defined as the strain �ij�r�� produced
at position r� due to a stress �ij�r� at r. This is given by
�ij = �kBT�−1Gij, where, for a homogeneous solid, Gij�r��
= ��i�0�� j�r��� is the strain-strain correlation function. The
�¯� denote a thermal average �and one over the choice of
origin� and kBT is the Boltzmann constant times the tempera-
ture �1�. The linear combinations of components of the strain
tensor � relevant to a 2D solid are ei �i=1,2 ,3� defined as
derivatives of the displacement field u�x ,y� calculated from

the undistorted reference lattice and given by e1=�ux /�x
+�uy /�y �volume�, e2=�ux /�x−�uy /�y �deviatoric�, and e3
= ��ux /�y+�uy /�x� /2 �shear�. For a solid at T�0 these are
fluctuating quantities, the width of the distribution being
fixed by the relevant elastic constant �8,9�. In classical, linear
elasticity strain fluctuations represent affine deformations,
i.e., the particle positions are obtainable, at all times, from
the ideal T=0 reference lattice position by local affine trans-
formations. These do not, however, exhaust all possible low
energy excitations of a real solid �14�.

Nevertheless, we begin with a strain-only derivation of
Gij for a fluctuating solid using �nonlocal� elasticity. We use
the dimensionless elastic free energy functional, F
=

kBT

a2
1
2 �dr�i�aiei

2+ci��ei�2+ci���
2ei�2�. Energy and length

scales are set by kBT and lattice parameter a, respectively.
The parameters ai �i=1–3� are the elastic constants and ci
and ci� set the length scales over which strain fluctuations
decay. The constraint �� �����T=0 �viz., St. Venant’s con-
dition �15�� ensures that fluctuations of the particle positions
are locally affine and strains can be defined everywhere, i.e.,
u�r� is smooth everywhere. In addition, the strains need to
ensure mechanical stability, viz., ��ij /�xj =0 where �ij
=�F /��ij are the conjugate stresses. In Fourier space these
relations lead to the following equations connecting strain

components in equilibrium: ẽi=Q̃ij�k�ẽj, where the kernels

	Q̃ij�k�		k	�0 are explicitly given as Q̃12= �a3−2a2� / �2a1

+a3��kx
2−ky

2� /k2, Q̃13= �4a2−2a3� / �a1+a2��kxky� / �k2�, and

Q̃23=−�4a1+2a3� / �a1+a2��kxky� / �kx
2−ky

2�. Note that Q̃ij�0�
=0—uniform strains are independent. These relations may
now be used to eliminate any two of the strains and obtain a
free energy functional only in terms of the single remaining
independent strain. We therefore get immediately from equi-
partition,

G̃ii�k � 0�−1 = 
ai + cik
2 + ci�k

4

+ �
j�i

�aj + cjk
2 + cj�k

4��Q̃ ji�k��2�
G̃ii�0�−1 = ai. �1�
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Consider the shape of G̃ii�k� implied by �1�. Along most
directions in k space all the correlation functions are discon-

tinuous, i.e., limk→0 G̃ii�k�� G̃ii�0�—an intrinsic property of

G̃ii�k�. If the solid is completely describable within the
framework of classical, linear elasticity, this should be ob-
servable in simulations and experiments. G22 is smooth and
continuous along the direction kx= 	ky as is G33 along kx
=0 or ky =0. In these special directions the coupling terms

involving Q̃ij�k� vanish and the correlation functions are
continuous, smoothly extrapolating to k=0. Therefore these
directions can be used in order to extract the elastic constants
and correlation lengths. The correlation functions Gii, i
=1–3, are plotted in Figs. 1�a�–1�c� in real space. In Fig.
1�d� we show cuts through these correlation functions in k

space showing especially the discontinuity in G̃11. The rota-
tional symmetry of G11 is eightfold, while the other two cor-
relation functions show a fourfold rotational symmetry.
These symmetries are inherent and independent of the sym-
metry of the analyzed solid.

What do these correlation functions look like in soft mat-
ter solids as, e.g., colloidal crystals? Experiments demon-
strate �10� that colloidal crystals far from the melting transi-
tion are harmonic. It is instructive, therefore, to compare
these analytic predictions for Gii first with Monte Carlo
simulations �17� of a harmonic triangular solid of N particles
with a Hamiltonian H=kBT�f /2��m,n=1

N �	rm−rn	−a�2 where f
is the spring constant and a is the lattice parameter. Energy
and length scales are set by kBT and a, respectively. The
elastic constants are given in terms of f by a1=�3 /2f =K, the

bulk modulus, and a2=�3 /4f =
 and a3=�3f =4
, where 

is the shear modulus. The relation a3=4a2 signifies an iso-
tropic solid �1� in 2D, and a1=2a2 is the so-called Cauchy
condition �2,8�. Strains are calculated with respect to the av-
erage particle positions rn�0�� as a reference �corrected for
center of mass motion and rotations of the system� using the
scheme of Falk and Langer �16�.

Briefly, we obtain the “best fit” local affine strain �ij
which maps as nearly as possible all the particles n in the
immediate neighborhood � of a tagged particle from the
reference to the transformed lattice. This is done by minimiz-
ing the �positive� scalar quantity,

D2�r,t� = �
n��

�
i

rn

i − r0
i − �

j

��ij + �ij��rn
j �0� − r0

j �0���2
, �2�

with respect to choices of affine �ij. Here i , j=x ,y and rn
i �0�

and rn
i are the ith component of the position vector of the nth

particle in the reference and transformed lattices, respec-
tively. The local strains, thus obtained, are averaged within
blocks of a size much smaller than the system size L to
obtain coarse-grained strains from which correlation func-
tions are computed.

Our results for simulations of a harmonic triangular lattice
with N=5822, f =200 /�3, lattice parameter a= �2 /�3�1/2, and
kBT=1 are shown in Figs. 2�a�–2�d�. The theoretical values
for the elastic constants in units of kBT /a2 are a1=100, a2
=50, and a3=200. A standard Metropolis algorithm with
open boundary conditions was used �17�. After 3�106

Monte Carlo steps for equilibration, configurations are stored
every 103 Monte Carlo steps. A total of 36�103 configura-
tions is used for the subsequent analysis. We obtain a1
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FIG. 1. �Color online� Analytic strain-strain correlation func-
tions for a triangular lattice with parameters obtained from fits to
simulations: subfigures show real space density plots of the strain-
strain correlation functions over a box of size L=34.35a: �a�
�L /a�2G11 �gray scale black to white �−0.003,0.015��, �b�
�L /a�2G22 ��−0.1,0.1��, and �c� �L /a�2G33 ��−0.03,0.03��. �d� Cuts

of G̃jj along various directions in k space: kx=ky for j=2, kx=0 for

j=3, and ky =2kx for j=1. Note the discontinuity in G̃11 at k=0.

-1 0 1
k

0

0.01

0.02

G
jj(k

)

j = 1
j = 2
j = 3

a) b)

c) d)

~

FIG. 2. �Color online� Simulation of a harmonic triangular lat-
tice. Subfigures show real space density plots of the strain-strain
correlation functions over a box of size L=34.35a. �a� �L /a�2G11

�gray scale black to white �−0.003,0.015��, �b� �L /a�2G22

��−0.1,0.1��, and �c� �L /a�2G33 ��−0.03,0.03��. �d� Simulation data

�symbols� and fits �lines� of G̃jj along various directions in k space:
kx=ky for j=2, kx=0 for j=3, and ky =2kx for j=1.
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=108.16, a2=47.14, and a3=193.80 to less than 8.2% nu-
merical uncertainty; most of the errors arising from the fit-
ting procedures and numerical Fourier transforms. Note that
the symmetry requirement for the triangular lattice, a2
=a3 /4, is satisfied to within 2.8%. More accurate estimates
�to within 2.5%� of the elastic constants can be obtained
from finite size scaling of the probability distributions for the
strains �9�. The quantities c2=27.80, c2�=0.833, c3=63.16,
and c3�=3.43 imply an average elastic correlation length �el
��ci�5–8 lattice spacings below which local linear elas-
ticity breaks down. The overall shapes of the Gii agree well
with the strain-only expression in Eq. �1�, the spatial aniso-
tropy being reproduced quite faithfully �Figs. 2�a�–2�c��. In
contrast, when we compare the discontinuities in G̃ii�k�, the
data differ spectacularly from the strain-only values. This is
most obvious in the k space cuts for G̃11�k� �Figs. 1�d� and
2�d��. For k→0 �k�0� G̃11�k� is 25 times larger than pre-
dicted, so the harmonic system is almost 25 times softer for
k�0 than the analytic predictions—well beyond random er-
rors in the data.

Is this also the case in a real colloidal crystal? The experi-
mental system studied is an improved version of Ref. �9�.
Spherical colloids �diameter d=4.5 
m� are confined by
gravity to a water/air interface formed by a hanging water
droplet. The field of view was 835�620 
m2, containing
typically 2�103 particles whereas the whole system has a
size of 50 mm2 and contains about 3�105 particles. The
analyzed volume V contains 840 particles arranged in a tri-
angular lattice. The particles are superparamagnetic. There-

fore a magnetic field H� applied perpendicularly to the water/

air interface induces a magnetic moment M� =�MH� in each
particle. This leads to a repulsive �inverse cubic� dipole-
dipole pair interaction with the dimensionless interaction
strength given by �, the ratio of potential to thermal energy.
Thus � can be interpreted as an inverse temperature. The
coordinates of all particles at each time step are analyzed and
the trajectories are recorded for 2–3 h. The local strains and
the strain correlation functions are obtained from these tra-
jectories using the same techniques described above for the
simulation data, except that now we need to account for the
medium surrounding the analyzed volume V which leads to a
coupling between volume and shear fluctuations. In the limit
that V is far smaller than the complete system G11�0�=a1
=K+
 and 
 can be extracted from pure shear fluctuations
in the embedded system, i.e., fluctuations of 2= ��uy /�x
−�ux /�y�. The shear fluctuations e2, e3, and 2 are coupled

and the kernel relating ẽ3 and 2̃ is Q̃3 2= 1
2 �kx

4−ky
4� / ��kx

2

−ky
2�2+kx

2ky
2(�4a1+2a3� / �a1+a2�)� �18�. The free energy of

the embedded system can be written as a functional of 2
and we obtain the correlation function

G̃2 2�k � 0�−1 = 
a3 + c3k2 + c3�k
4 + �

j=1

2

�aj + cjk
2 + cj�k

4�

��Q̃ j3�k��2��Q̃3 2�k��2,

G̃2 2�0�−1 = a3/4. �3�

The behavior of the strain correlation functions of the
colloidal crystal shown in Fig. 3 is similar to that of the
harmonic system �Fig. 2�. The anisotropy of the correlation
functions agrees well with theory and simulation results.
Elastic constants in units of kBT /a2 obtained from the k=0
values of G11 �K=598.17� and G2 2 �
=60.20� lie within
2.9% of those obtained by analyzing the same data using the
procedure of Ref. �9�. For the superparamagnetic colloidal
crystal 
=K /10. This relation is recovered within less than
1.0%. The symmetry of G22 is recovered well, which is a
sign that defects lying outside the analyzed region have no

impact on the analysis. Again the discontinuities in G̃ii�k� are
much reduced compared to the strain-only values, as was the
case in the simulations. In both cases the correlations seem to
acquire an additional, isotropic contribution, the origin of
which is unclear within our strain-only model.

The residual value of D2 in Eq. �2� is a measure of non-
affineness, i.e., failure to obtain a unique value for displace-
ment derivatives �ij. Even the harmonic solid, which con-
serves local topology, has spontaneous nonaffine fluctuations
of zero mean. We have plotted the correlation function cor-
responding to D2 for the colloidal solid �Fig. 4�a�� and the
harmonic system �Fig. 4�b��. Both depict an isotropic func-
tion decaying rapidly within a range ��el. Small numerical
errors account for at most a small overall approximately con-
stant offset in GD2. In Fig. 4�c� we plot the probability dis-
tribution of D2 for the colloidal crystal and for harmonic
solids with f =200 /�3 and 1200 /�3. The colloidal crystal
has an intermediate stiffness, compared to the two harmonic
systems. We observe that stiffer solids generate smaller D2,
showing that its origin is thermal. This short-wavelength,

-2 0 2
k

0

0.005

0.01

0.015

G
jj(k

)

j = 1
j = 2
j = 3
j = 2θ

a) b)

c) d)
~

FIG. 3. �Color online� Colloidal crystal at �=150 �19�. The
strain correlation functions were obtained from 3600 independent
configurations for a defect-free square region �L=12.881a�. �a�–�c�
show real space strain-strain correlation functions �L /a�2G11

�gray scale, black to white �−0.0015,0.0015��, �L /a�2G22

��−0.05,0.075��, and �L /a�2G2 2 ��−0.02,0.04��. �d� Data �sym-

bols� and fits �lines� of G̃jj along various directions in k space: kx

=ky for j=2, kx=0 for j=3 and j=2, and ky =2kx for j=1.
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thermal, nonaffine noise smooths the discontinuities of the
strain correlation functions. An examination of the neighbor-
hood of particles with large D2 reveals that this represents

creation and annihilation of incipient defect-antidefect pairs
producing a defect density field �3,14� fluctuating about zero.

In summary, we have described �T�0� strain-strain cor-
relation functions for soft solids in 2D. The correlation func-
tions are shown to have a complex structure. The contribu-
tion of nonaffine displacements, which are essential and
unavoidable, has important consequences for the nonlocal
elastic response of soft solids. We believe that the strain cor-
relation function may serve as a benchmark for characteriz-
ing soft crystals, being sensitive to the presence of defect
pairs. Generalization of our results to higher dimensions and
to less symmetric structures �20� is another direction for fu-
ture studies.
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FIG. 4. �Color online� �a� Correlation function of the nonaffine
parameter GD2�x ,y� for the colloidal crystal at �=150 �19�. �b�
Correlation function GD2�x ,y� for the harmonic system �f
=1200 /�3�. �c� Probability distribution P�D2� for different spring
constants f and the colloidal solid.
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